Global parameters¶
The SeisComP configuration uses a unified schema to configure modules. Modules which use the SeisComP libraries can read this configuration directly and share global configuration options like messaging connections, database configurations, logging and much more. There are still some modules that do not use the libraries and are called standalone modules such as seedlink and slarchive. They need wrappers to generate their native configuration when seiscomp update-config is run.
Global parameters can be used by many modules. Thus multiple configuration can be avoided. The parameters are read from file in the following order:
@SYSTEMCONFIGDIR@/global.cfg
@CONFIGDIR@/global.cfg
Parameters from @CONFIGDIR@
override parameters from
@SYSTEMCONFIGDIR@
.
Most trunk modules read the configuration from the global configuration which can be overridden by the module configuration. Read the concept section on modules and the concept section on the configuration for more details.
Though it is easy to create the configuration by directly editing the configuration files, it is even more convenient to use a graphical configuration tool. SeisComP ships with scconfig, a graphical configuration and management tool which makes it easy to maintain module configurations and station bindings even for large networks. It has built-in functionality to check the state of all registered modules and to start and stop them.
The configuration is divided into three parts: stations, modules and bindings.
Station meta data¶
Station meta-data is a fundamental requirement for a seismic processing system and for SeisComP. Read the inventory section in concepts for more details.
Modules¶
The concepts of modules and their configuration is described in the concepts section.
Bindings¶
Bindings provide specific configurations per module and station and even stream. Read the bindings section in concepts for more details on bindings.
Extensions¶
Extensions add new configuration options to modules. It does not matter how those extensions are used. Commonly a module loads a plugin, which requires additional configuration parameters - these are provided by an extension.
There are currently extensions for the following modules, corresponding to the plugins shown:
See the documentation for each module for further information about its extensions.
Module Configuration¶
- agencyID¶
Default:
GFZ
Type: string
Agency ID used to set creationInfo.agencyID in data model objects. Should not contain spaces.
- datacenterID¶
Type: string
Datacenter ID which is primarily used by Arclink and its tools. Should not contain spaces.
- organization¶
Default:
Unset
Type: string
Organization name used mainly by ArcLink and SeedLink.
- author¶
Default:
@appname@@@@hostname@
Type: string
Author name used to set creationInfo.author in data model objects. @appname@ is replaced by the name of the respective executable, @hostname@ by the name of the computer on which it runs.
- plugins¶
Type: list:string
List of plugins loaded at startup. Separate multiple names by comma. Add ${plugins} to consider all previously read values.
- cityXML¶
Type: string
Path to the cities XML file. If undefined, the data is read from "@CONFIGDIR@/cities.xml" or "@DATADIR@/cities.xml". SeisComP ships with "@DATADIR@/cities.xml".
- loadCities¶
Type: boolean
Load cities from file configured by the "cityXML" parameter. GUI and map applications enable loading of cities by default considering the parameter "scheme.map.showCities".
- loadRegions¶
Type: boolean
Load custom FEP (Flinn-Engdahl polygon) regions from "@CONFIGDIR@/fep/" or @DATADIR@/fep/". GUI and map applications and scevent enable FEP regions by default. Explicitly uncheck the option to disregard by these applications.
- publicIDPattern¶
Type: string
Define a custom pattern for generation of public object IDs. The following variables are resolved: @classname@ (class name of object), @id@ (public object count), @globalid@ (general object count), @time@ (current time, use ‘/’ to supply custom format e.g. @time/%FT%T.%fZ@
- configModule¶
Default:
trunk
Type: string
Name of the configuration module.
- database¶
Type: string
Define the database connection. If no database is configured (which is the default) and a messaging connection is available, the application will receive the parameters after the connection is established. Override these values only if you know what you are doing.
The format is: service://user:pwd@host/database. "service" is the name of the database driver which can be queried with "--db-driver-list". IMPORTANT: This parameter replaces former "database.type" and "database.parameters" which have been removed.
- recordstream¶
Type: string
SeisComP applications access waveform data through the RecordStream interface. Read the SeisComP documentation for a list of supported services and their configuration.
This parameter configures RecordStream source URL.
Format: [service://]location[#type]
"service": The name of the RecordStream implementation. If not given, "file://" is implied.
IMPORTANT: This parameter replaces former RecordStream configurations in "recordstream.service" and "recordstream.source" which have been removed.
- logging.level¶
Default:
2
Type: int
Set the logging level between 1 and 4 where 1=ERROR, 2=WARNING, 3=INFO and 4=DEBUG.
- logging.syslog¶
Default:
false
Type: boolean
Enable logging to syslog if supported by the host system.
- logging.components¶
Type: list:string
Limit the logging to the specified list of components. Example: ‘Application, Server’.
- logging.component¶
Type: boolean
For each log entry print the component right after the log level. By default, the component output is enabled for file output but disabled for console output.
- logging.context¶
Default:
false
Type: boolean
For each log entry print the source file name and line number.
- logging.utc¶
Type: boolean
Use UTC instead of local time in logging timestamps.
- logging.file.rotator¶
Default:
true
Type: boolean
Enable rotation of log files.
- logging.file.rotator.timeSpan¶
Default:
86400
Unit: s
Type: int
Time span after which a log file is rotated.
- logging.file.rotator.archiveSize¶
Default:
7
Type: int
How many historic log files to keep.
- logging.file.rotator.maxFileSize¶
Default:
104857600
Unit: byte
Type: int
The maximum size of a log file in byte. The default value is 100 megabyte. If a log file exceeds that size, then it is rotated. To disable the size limit give 0 or a negative value.
- logging.objects.timeSpan¶
Default:
60
Unit: s
Type: int
Time span for counting input/output of objects.
- logging.syslog.facility¶
Default:
local0
Type: string
Define the syslog facility to be used according to the defined facility names in syslog.h. The default is local0. If the given name is invalid or not available, initializing logging will fail and the application quits.
- connection.server¶
Default:
localhost
Type: host-with-port
Define the URL of the messaging server to connect to. URL format is [scheme://]host[:port][/queue]. Default scheme: scmp, default port: 18180, default queue: production. Examples:
All default: localhost
Specific host: scmp://10.0.1.4:18180/production
Specific host and SSL encryption: scmps://10.0.1.4:18180/production
- connection.username¶
Type: string
Define the username to be used. The length is maybe limited by the messaging system used. By default, the module name (name of the executable) is used but sometimes it exceeds the 10 character limit and access is denied. To prevent errors set a different username. An empty username will let the system to generate one.
- connection.certificate¶
Type: string
Define the OpenSSL client certificate to be used. Path to OpenSSL certificate in PKCS 12 format or the prefix "data:" followed by the Base64 encoded certificate data.
- connection.timeout¶
Default:
3
Unit: s
Type: int
The connection timeout in seconds. 3 seconds are normally more than enough. If a client needs to connect to a remote system with a slow connection, a larger timeout might be needed.
- connection.primaryGroup¶
Type: string
Define the primary group of a module. This is the name of the group where a module sends its messages to if the target group is not explicitly given in the send call.
- connection.contentType¶
Default:
binary
Type: string
Define the message encoding for sending. Allowed values are "binary", "json" or "xml". XML has more overhead in processing but is more robust when schema versions between client and server are different.
- connection.subscriptions¶
Type: list:string
Define a list of message groups to subscribe to. The default is usually given by the application and does not need to be changed.
Note
database.* Define the database connection. If no database is configured (which is the default) and a messaging connection is available, the application will receive the parameters after the connection is established. Override these values only if you know what you are doing.
- database.inventory¶
Type: string
Load the inventory database from a given XML file if set. This overrides the inventory definitions loaded from the database backend.
- database.config¶
Type: string
Load the configuration database from a given XML file if set. This overrides the configuration definitions loaded from the database backend.
- processing.whitelist.agencies¶
Type: list:string
Define a whitelist of agencies that are allowed for processing. Separate items by comma.
- processing.blacklist.agencies¶
Type: list:string
Define a blacklist of agencies that are not allowed for processing. Separate items by comma.
- inventory.whitelist.nettype¶
Type: list:string
List of network types to include when loading the inventory.
- inventory.whitelist.statype¶
Type: list:string
List of station types to include when loading the inventory.
- inventory.blacklist.nettype¶
Type: list:string
List of network types to exclude when loading the inventory.
- inventory.blacklist.statype¶
Type: list:string
List of station types to exclude when loading the inventory.
- scripts.crashHandler¶
Type: path
Path to crash handler script.
- core.plugins¶
Default:
dbmysql
Type: list:string
Define a list of core modules loaded at startup.
- client.startStopMessage¶
Default:
false
Type: boolean
Enable sending of an application start- and stop message to the STATUS_GROUP.
- client.autoShutdown¶
Default:
false
Type: boolean
Enable automatic application shutdown triggered by a status message.
- client.shutdownMasterModule¶
Type: string
Trigger shutdown if the module name of the received messages match.
- client.shutdownMasterUsername¶
Type: string
Trigger shutdown if the user name of the received messages match.
- commands.target¶
Type: string
A regular expression of all clients that should handle a command message usually send to the GUI messaging group. Currently this flag is only used by GUI applications to set an artificial origin and to tell other clients to show this origin. To let all connected clients handle the command, ".*$" can be used.
Note
ttt.* Travel time table related configuration. Travel time tables can be added via plugins. Built-in interfaces are LOCSAT, libtau and homogeneous. For each loaded interface a list of supported models must be provided.
Note
ttt.$name.* $name is a placeholder for the name to be used.
- ttt.$name.tables¶
Type: list:string
The list of supported model names per interface.
Note
amplitudes.* Parameters for amplitude measurements.
- amplitudes.iaspei¶
Default:
false
Type: boolean
Compute ML peak-to-trough and mb amplitudes according to IASPEI recommendations.
Note
amplitudes.ttt.* Travel time table specific parameters to be used for the computation of travel times referred to in signal and noise time window specifications, e.g. “signalBegin”. This can be overridden per station in its bindings.
- amplitudes.ttt.interface¶
Default:
libtau
Type: string
No description available
- amplitudes.ttt.model¶
Default:
iasp91
Type: string
No description available
Note
amplitudes.WoodAnderson.* Parameters of the Wood-Anderson seismometer response used for instrument simulation. The default values are according to Uhrhammer and Collins (1990) and were part of the IASPEI Magnitude Working Group recommendations of 2011 September 9.
- amplitudes.WoodAnderson.gain¶
Default:
2080
Type: double
The gain of the Wood-Anderson response.
- amplitudes.WoodAnderson.T0¶
Default:
0.8
Unit: s
Type: double
The eigenperiod of the Wood-Anderson seismometer.
- amplitudes.WoodAnderson.h¶
Default:
0.7
Type: double
The damping constant of the Wood-Anderson seismometer.
Note
magnitudes.* Parameters for computing magnitudes. Add magnitude regionalization and mapping to Mw by magnitude-type profiles. One profile corresponds to one magnitude type.
- magnitudes.aliases¶
Type: list:string
Definition of magnitude aliases for deriving new magnitude types from existing magnitude and amplitude types. Separate multiple entries by comma.
Format:
NewType:OriginalMagnitudeType[:OriginalAmplitudeType]
OriginalAmplitudeType is optional. The default amplitude type applies if OriginalAmplitudeType is undefined.
Examples for deriving magnitude of new type ABC from MLv:
ABC:MLv:MLv
ABC:MLv
Alias magnitudes can be configured like any other magnitude.
Note
magnitudes.$name.* Regionalization of magnitude configurations overriding global bindings. For parameters which are not set, the values defined in bindings apply. $name is a placeholder for the name to be used.
- magnitudes.$name.MwMapping¶
Type: list:string
Mw magnitude mapping table for estimating Mw from network magnitude M. Mw values are given at some M.
Format: "M0:Mw0, M1:Mw1, …".
Between two values of M, Mw values will be linearly interpolated but not extrapolated.
- magnitudes.$name.regionFile¶
Type: path
Path to a geofeature file, e.g. in BNA or GeoJSON format, with one or more polygons defining geographic regions. Each region allows further magnitude parametrization. The order of polygons/regions matters. The list is tested from front to back and the first hit wins. Magnitude-region profiles refer to the polygons by the name of the profile. The special name "world" must not be present in the geofeature file.
Note
magnitudes.$name.region.* Add magnitude region profiles for regions defined by polygons in the geofeature file of regionFile. Profile names must match one polygon name. Otherwise, the profile is not considered. The special name “world” corresponds to the region of the entire planet as a fallback.
Note
magnitudes.$name.region.$name.* $name is a placeholder for the name to be used.
- magnitudes.$name.region.$name.enable¶
Default:
false
Type: boolean
Enable the region or not.
- magnitudes.$name.region.$name.minDist¶
Unit: deg
Type: double
The minimum distance required to compute a magnitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to compute the distance. The default value is implementation specific.
- magnitudes.$name.region.$name.maxDist¶
Unit: deg
Type: double
The maximum distance allowed to compute a magnitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to compute the distance. The default value is implementation specific.
- magnitudes.$name.region.$name.minDepth¶
Unit: km
Type: double
The minimum depth required to compute a magnitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to retrieve the depth. The default value is implementation specific.
- magnitudes.$name.region.$name.maxDepth¶
Unit: km
Type: double
The maximum depth allowed to compute a magnitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to retrieve the depth. The default value is implementation specific.
- magnitudes.$name.region.$name.check¶
Default:
source
Type: string
Define how the region check is performed to accept a source receiver pair for further processing. Allowed values are:
source: Only the source/origin must be within the region.
source-receiver: Both source/origin and receiver/station must be within the region.
raypath: The entire path between source/origin and receiver/station must be withing the region.
- magnitudes.$name.region.$name.multiplier¶
Type: double
Linear part of the default station correction for this region.
- magnitudes.$name.region.$name.offset¶
Type: double
Constant part of the default station correction for this region.
mapmultigrid plugin¶
Note
map.multigrid.* Dynamically display multiple grids in Surfer or GeoTIFF format as layers on maps by the plugin ‘mapmultigrid’. Add ‘mapmultigrid’ to ‘plugins’ and ‘multigrid’ to ‘map.customLayers’. Within this section define profiles for adding and customizing the layers. Finally, register the profiles in ‘map.multigrid.profiles’.
- map.multigrid.profiles¶
Type: list:string
List of grid profile names to be considered. Separate multiple names by comma.
- map.multigrid.mode¶
Default:
poly
Type: string
Values:
grid, line, poly
Render mode of the mapmultigrid plugin. May be overridden per grid profile.
Note
map.multigrid.profiles.* Define one more grid profiles for showing grids on maps. Each profile can consider one ore more grid files. Add the name of the profile to ‘map.mapmultigrid.profiles’ for using them.
Note
map.multigrid.profiles.$name.*
$name is a placeholder for the name to be used and needs to be added to profiles
to become active.
profiles = a,b
map.multigrid.profiles.a.value1 = ...
map.multigrid.profiles.b.value1 = ...
# c is not active because it has not been added
# to the list of profiles
map.multigrid.profiles.c.value1 = ...
- map.multigrid.profiles.$name.watch¶
Type: list:string
List of files to be shown and monitored for changes with inotify. Supported file formats are: Surfer 6 (binary grids) and GeoTIFF. The GeoTIFF support is experimental and not all GeoTIFF datatypes are supported. The file extension must be TIFF for GeoTIFF files. Separate multiple files by comma.
The corresponding directory must exist prior to opening maps.
- map.multigrid.profiles.$name.title¶
Type: string
The title of the grid legend shown on map.
- map.multigrid.profiles.$name.legendArea¶
Default:
bottomright
Type: string
Values:
topleft,topright,bottomright,bottomleft
The location of the grid legend on the map.
- map.multigrid.profiles.$name.legendVisible¶
Default:
true
Type: boolean
Show the legend for this profile.
- map.multigrid.profiles.$name.discrete¶
Default:
true
Type: boolean
Use a discrete gradient is for rendering in grid mode.
- map.multigrid.profiles.$name.mode¶
Default:
grid
Type: string
Values:
grid, line, poly
Render mode of the grid profile.
- map.multigrid.profiles.$name.visible¶
Default:
true
Type: boolean
Make this item visible at startup.
- map.multigrid.profiles.$name.composition¶
Default:
src-over
Type: string
Values:
src-over, dst-over, clear, src, dst, src-in, dst-in, src-out, dst-out, src-atop, dst-atop, xor, plus, muliply, screen, darken,lighten, color-dodge, color-burn, hard-light,soft-light, difference, exclusion, src-or-dst,src-and-dst, src-xor-dst, not-src-and-not-dst,not-src-or-not-dst, not-src-xor-dst, not-src,not-src-and-dst, src-and-not-dst
Sets the composition mode. Specifies how the pixels of the grid (the source) are merged with the pixels of the map (the destination).
See the QT documentation: https://doc.qt.io/archives/qt-4.8/qpainter.html#CompositionMode-enum for the modes.
- map.multigrid.profiles.$name.renderBackToFront¶
Default:
false
Type: boolean
If true, render polygons in inverse value order, highest value first and lowest value last.
- map.multigrid.profiles.$name.stops¶
Type: gradient
Gradient used for rendering the grid. Overridden by configuration of gradients parameters.
Example (value:color:style):
30.00:ff00fa:"major",60.00:f25ffb:"minor"
where minor and major refer to the name of style profiles which must be defined.
- map.multigrid.profiles.$name.style¶
Type: string
Name of defined style profile(s) to be considered. Can be omitted if styles are named in ‘stops’.
Note
map.multigrid.profiles.$name.gradient.* Configuring a gradient overrides stops.
- map.multigrid.profiles.$name.gradient.name¶
Type: string
Values:
Default,Spectrum,Circle,BlackBody,Inferno,Plasma,BlackWhite,WhiteBlack,BuPu,Blues,PuRd,RdYlBu,Parula,Viridis
Name of the standard built-in gradient. Read the documentation of color gradients for the details.
- map.multigrid.profiles.$name.gradient.min¶
Type: double
Minimum value of the target value range.
- map.multigrid.profiles.$name.gradient.max¶
Type: double
Maximum value of the target value range.
- map.multigrid.profiles.$name.gradient.alpha¶
Default:
50
Type: integer
Range:
[0:255]
Transparency. Overrides the alpha value of the gradient.
- map.multigrid.profiles.$name.gradient.nodes¶
Default:
-1
Type: integer
Number of nodes at which to define the color gradient. The respective values will be shown in legends.
< 2: Use nodes originally defined by gradient.
Note
map.multigrid.styles.* Define style profiles used by the grid profiles.
Note
map.multigrid.styles.$name.* $name is a placeholder for the name to be used.
Note
map.multigrid.styles.$name.brush.* Brushes are used to fill a polygon. They have two attributes: color and pattern.
- map.multigrid.styles.$name.brush.color¶
Default:
000000FF
Type: string
The brush color following the color definition in SeisComP: color-code name, rgb or hexadecimal representation.
- map.multigrid.styles.$name.brush.pattern¶
Default:
solid
Type: string
Values:
solid,dense1,dense2,dense3,dense4,dense5,dense6, dense7,nobrush,horizontal,vertical,cross,bdiag,fdiag,diagcross
The brush pattern.
Note
map.multigrid.styles.$name.pen.* Pens are used to draw lines with three attributes: color, style and width.
- map.multigrid.styles.$name.pen.color¶
Default:
000000FF
Type: string
The pen color following the color definition in SeisComP: color-code name, rgb or hexadecimal representation.
- map.multigrid.styles.$name.pen.style¶
Default:
solidline
Type: string
Values:
nopen, solidline, dotline, dashline, dashdotline, dashdotdotline
The pen style.
- map.multigrid.styles.$name.pen.width¶
Default:
1.0
Unit: px
Type: double
The pen width.
mbtiles plugin¶
Note
map.osm.* Configuration parameters specific to the OpenStreetMap (OSM) tile store. Also add ‘mbtiles’ to ‘plugins’, the store URL to ‘map.location’ and ‘osm’ to ‘map.type’ for using OSM tile stores.
- map.osm.tileSize¶
Default:
256
Unit: px
Type: int
Edge length of the square tiles received from the server.
- map.osm.maxLevel¶
Default:
10
Type: int
Maximum available/allowed tile level. The OSM servers typically serve map tiles up to level 19.
- map.osm.cacheDir¶
Type: string
Path of an optional cache directory. If specified downloaded tiles will we cached to speed up requests and to save network bandwidth.
- map.osm.cacheDuration¶
Default:
86400
Unit: s
Type: int
Number of seconds a cached tile is valid. Cache files older than the specified number of seconds are reloaded from the tile server upon request. Use a negative value to indicated an unlimited cache duration.
Bindings Parameters¶
- detecLocid¶
Type: string
The sensor location code of the preferred stream used e.g. by scautopick and scrttv.
- detecStream¶
Type: string
The channel code of the preferred stream used by e.g. scautopick and scrttv. If no component code is given, the vertical component will be fetched from inventory considering the channel orientation (azimuth, dip). If that approach fails, ‘Z’ will be appended and used as fallback. Do not use regular expressions!
Note
amplitudes.* Define general parameters for amplitudes of a certain type. Create amplitude type profiles to define the time windows, minimum signal-to-noise ratio, amplitude thresholds and restitution for measuring amplitudes of a certain type.
- amplitudes.saturationThreshold¶
Default:
false
Unit: counts; %
Type: string
Define the saturation threshold for the optional saturation check. By default, the saturation check is disabled but giving a value above 0 will enable it. Waveforms that are saturated are not used for amplitude calculations.
This value can either be an absolute value of counts such as "100000" counts or a relative value (optionally in percent) with respect to the number of effective bits, e.g. "0.8@23" or "80%@23". The first version uses 1**23 * 0.8 whereas the latter uses 1**23 * 80/100.
The boolean value "false" explicitly disables the check.
- amplitudes.enable¶
Default:
true
Type: boolean
Define if amplitude calculation is enabled. If disabled, this station will be skipped for amplitudes and magnitudes.
- amplitudes.enableResponses¶
Default:
false
Type: boolean
Activate deconvolution for this station. If no responses are configured, an error is raised and the data is not processed. This flag will be overridden by the type specific flag (see GlobalAmplitudeProfile).
Note
amplitudes.$name.* An amplitude profile configures global parameters for a particular amplitude type. The available amplitude types are not fixed and can be extended by plugins. The name of the type must match the one defined in the corresponding AmplitudeProcessor. $name is a placeholder for the name to be used.
- amplitudes.$name.saturationThreshold¶
Default:
false
Unit: counts; %
Type: string
Define the saturation threshold for the optional saturation check. By default, the saturation check is disabled but giving a value above 0 will enable it. Waveforms that are saturated are not used for amplitude calculations.
This value can either be an absolute value of counts such as "100000" counts or a relative value (optionally in percent) with respect to the number of effective bits, e.g. "0.8@23" or "80%@23". The first version uses 1**23 * 0.8 whereas the latter uses 1**23 * 80/100.
The boolean value "false" explicitly disables the check.
- amplitudes.$name.enable¶
Default:
true
Type: boolean
Define if amplitude calculation of certain type is enabled.
- amplitudes.$name.enableResponses¶
Default:
false
Type: boolean
Activate deconvolution for this amplitude type. If not set, the global flag "amplitudes.enableResponses" will be used instead.
- amplitudes.$name.minSNR¶
Type: double
Define the minimum SNR to be reached to compute the amplitudes. This value is amplitude type specific and has no global default value.
- amplitudes.$name.noiseBegin¶
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the noise window used to compute the noise offset and noise amplitude. Each amplitude processor sets its own noise time window and this option should only be changed if you know what you are doing.
- amplitudes.$name.noiseEnd¶
Unit: s
Type: double
Override the default time (relative to the trigger time) of the end of the noise window used to compute the noise offset and noise amplitude. Each amplitude processor sets its own noise time window and this option should only be changed if you know what you are doing.
- amplitudes.$name.signalBegin¶
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to compute the final amplitude. Each amplitude processor sets its own signal time window and this option should only be changed if you know what you are doing.
- amplitudes.$name.signalEnd¶
Unit: s
Type: double
Override the default time (relative to the trigger time) of the end of the signal window used to compute the final amplitude. Each amplitude processor sets its own signal time window and this option should only be changed if you know what you are doing.
- amplitudes.$name.minDist¶
Unit: deg
Type: double
The minimum distance required to compute an amplitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to compute the distance. The default value is implementation specific.
- amplitudes.$name.maxDist¶
Unit: deg
Type: double
The maximum distance allowed to compute an amplitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to compute the distance. The default value is implementation specific.
- amplitudes.$name.minDepth¶
Unit: km
Type: double
The minimum depth required to compute an amplitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to retrieve the depth. The default value is implementation specific.
- amplitudes.$name.maxDepth¶
Unit: km
Type: double
The maximum depth allowed to compute an amplitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to retrieve the depth. The default value is implementation specific.
- amplitudes.$name.regionalize¶
Default:
true
Type: boolean
Control if the amplitude calculation should be regionalized or not. The regions and their configuration are taken from the corresponding magnitude profiles. If regionalization is activate, then e.g. modules without origin information will not be able to compute an amplitude as the origin is required to determine the effective settings.
If amplitudes for this particular type shall be computed regardless of any defined regions, set this parameter to false.
Note
amplitudes.$name.resp.* Several parameters if usage of full responses is enabled.
- amplitudes.$name.resp.taper¶
Default:
5
Unit: s
Define the length of the taper at either side of the waveform. The length will be added to the data request: start - taper and end + taper.
- amplitudes.$name.resp.minFreq¶
Default:
0.00833333
Unit: Hz
After data are converted in to the frequency domain that minimum frequency defines the end of the left-side cosine taper for the frequency spectrum. The taper applies from 0 Hz to {minFreq} Hz. A value of 0 or lower disables that taper.
- amplitudes.$name.resp.maxFreq¶
Default:
0
Unit: Hz
After data are converted in to the frequency domain that maximum frequency defines the start of the right-side cosine taper for the frequency spectrum. The taper applies from {maxFreq} Hz to {fNyquist} Hz. A value of 0 or lower disables that taper.
Note
amplitudes.resp.* Several parameters if usage of full responses is enabled. The parameters of this group will be overridden by type specific settings if given (see GlobalAmplitudeProfile).
- amplitudes.resp.taper¶
Default:
5
Unit: s
Define the length of the taper at either side of the waveform. The length will be added to the data request: start - taper and end + taper.
- amplitudes.resp.minFreq¶
Default:
0.00833333
Unit: Hz
The minimum frequency of the considered spectrum.
After data is converted into the frequency domain that minimum frequency defines the end of the left-side cosine taper applied to the spectrum. The taper applies from 0 Hz to {minFreq} Hz. A value of 0 or lower disables that taper.
- amplitudes.resp.maxFreq¶
Default:
0
Unit: Hz
The maximum frequency of the considered spectrum.
After data are converted in to the frequency domain that maximum frequency defines the start of the right-side cosine taper applied to the spectrum. The taper applies from {maxFreq} Hz to {fNyquist} Hz. A value of 0 or lower disables that taper.
Note
amplitudes.ttt.* Travel time table specific parameters to be used for the computation of travel times referred to in signal and noise time window specifications, e.g. “signalBegin”.
- amplitudes.ttt.interface¶
Default:
libtau
Type: string
No description available
- amplitudes.ttt.model¶
Default:
iasp91
Type: string
No description available
Note
amplitudes.WoodAnderson.* Parameters of the Wood-Anderson seismometer response used for instrument simulation. The default values are according to Uhrhammer and Collins (1990) and were part of the IASPEI Magnitude Working Group recommendations of 2011 September 9.
- amplitudes.WoodAnderson.gain¶
Default:
2080
Type: double
The gain of the Wood-Anderson response.
- amplitudes.WoodAnderson.T0¶
Default:
0.8
Unit: s
Type: double
The eigenperiod of the Wood-Anderson seismometer.
- amplitudes.WoodAnderson.h¶
Default:
0.7
Type: double
The damping constant of the Wood-Anderson seismometer.
Note
magnitudes.* Define magnitude parameters independent of amplitude-type profiles. For magnitude correction parameters, e.g., network of station corrections, create a magnitude type profile.
Note
magnitudes.$name.* A magnitude profile configures global parameters for a particular magnitude type. The available magnitude types are not fixed and can be extended by plugins. The name of the type must match the one defined in the corresponding MagnitudeProcessor. $name is a placeholder for the name to be used.
- magnitudes.$name.multiplier¶
Default:
1
Type: list:string
Part of the magnitude station correction. The final magnitude value is multiplier*M+offset. This value can be regionalized with name-value pairs. The name is the name of the region. Without a name the value is the default without regionalization. Example: "1.0, regionA: 0.9, regionB: 1.1".
- magnitudes.$name.offset¶
Default:
0
Type: list:string
Part of the magnitude station correction. The final magnitude value is multiplier*M+offset. This value can be regionalized with name-value pairs. The name is the name of the region. Without a name the value is the default without regionalization. Example: "0.0, regionA: -0.1, regionB: 0.2".
Note
picker.* Parameters controlling the second-stage picker for re-picking P phases after an initial detection.
Note
picker.AIC.* AIC picker is an implementation using the simple non-AR algorithm of Maeda (1985), see paper of Zhang et al. (2003) in BSSA. The picker interface name to be used in configuration files, e.g. of scautopick, is “AIC”.
- picker.AIC.noiseBegin¶
Default:
0
Unit: s
Type: double
Override the relative data acquisition time (relative to the triggering pick). This adds a margin to the actual processing and is useful to initialize the filter (Example: bandpass). The data is not used at all until signalBegin is reached. The data time window start is the minimum of noiseBegin and signalBegin.
- picker.AIC.signalBegin¶
Default:
-30
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to pick.
- picker.AIC.signalEnd¶
Default:
10
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to pick.
- picker.AIC.filter¶
Type: string
Override the default filter which is "raw". The typical filter grammar can be used.
- picker.AIC.minSNR¶
Default:
3
Type: double
Mininum SNR as returned from AIC for accepting picks.
Note
picker.BK.* Bkpicker is an implementation of the Baer/Kradolfer picker adapted to SeisComP. It was created by converting Manfred Baers from FORTRAN to C++ and inserting it as a replacement for the picker algorithm. The picker interface name to be used in configuration files, e.g. of scautopick,is “BK”.
- picker.BK.noiseBegin¶
Default:
0
Unit: s
Type: double
Override the relative data acquisition time (relative to the triggering pick). This adds a margin to the actual processing and is useful to initialize the filter (Example: bandpass). The data is not used at all until signalBegin is reached. The data time window start is the minimum of noiseBegin and signalBegin.
- picker.BK.signalBegin¶
Default:
-20
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to pick.
- picker.BK.signalEnd¶
Default:
80
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to pick.
- picker.BK.filterType¶
Default:
BP
Type: string
BP (bandpass) is currently the only option.
- picker.BK.filterPoles¶
Default:
2
Type: int
Number of poles.
- picker.BK.f1¶
Default:
5
Unit: Hz
Type: double
Bandpass lower cutoff freq. in Hz.
- picker.BK.f2¶
Default:
20
Unit: Hz
Type: double
Bandpass upper cutoff freq. in Hz.
- picker.BK.thrshl1¶
Default:
10
Type: double
Threshold to trigger for pick (c.f. paper), default 10
- picker.BK.thrshl2¶
Default:
20
Type: double
Threshold for updating sigma (c.f. paper), default 20
Note
spicker.* Parameters controlling the secondary picker. Example: for picking S phases.
Note
spicker.L2.* L2 is an algorithm to pick S-phases based on existing P-phases. It works by creating the L2 norm of the two filtered horizontal components and then running the `detecFilter` on the L2 trace to find the S pick. Finally AIC is applied around the detected pick time to refine the detection. The picker name to be used in configuration files is “S-L2”.
- spicker.L2.noiseBegin¶
Default:
-10
Unit: s
Type: double
Override the relative data processing start time (relative to the triggering pick). This adds a margin to the actual processing and is useful to initialize the filter (Example: bandpass). The data is not used at all until signalBegin is reached. The data time window start is the minimum of noiseBegin and signalBegin.
- spicker.L2.signalBegin¶
Default:
0
Unit: s
Type: double
Override the relative start time (relative to the triggering pick) of the begin of the signal processing.
- spicker.L2.signalEnd¶
Default:
60
Unit: s
Type: double
Override the relative end time (relative to the triggering pick) of the end of the signal window used to pick.
- spicker.L2.filter¶
Default:
BW(4,0.3,1.0)
Type: string
Configure the filter used to process the horizontal components traces before computing the L2-norm.
- spicker.L2.detecFilter¶
Default:
STALTA(1,10)
Type: string
Configure the detector filter applied on the filtered L2 trace.
- spicker.L2.threshold¶
Default:
3
Type: double
The detector threshold that triggers the AIC picker.
- spicker.L2.timeCorr¶
Default:
0
Unit: s
Type: double
The time correction added to the detection time before AIC time window is computed.
- spicker.L2.marginAIC¶
Default:
5
Unit: s
Type: double
The AIC time window around the detection used to pick. If 0, AIC is not used.
- spicker.L2.minSNR¶
Default:
15
Type: double
Minimum SNR as returned from AIC for accepting picks.
Note
spicker.V.* This S-picker works similarly to L2 but it only uses the vertical component to pick S-phases. The picker name to be used in configuration files is “S-V”.
- spicker.V.noiseBegin¶
Default:
-10
Unit: s
Type: double
Override the relative data processing start time (relative to the triggering pick). This adds a margin to the actual processing and is useful to initialize the filter (Example: bandpass). The data is not used at all until signalBegin is reached. The data time window start is the minimum of noiseBegin and signalBegin.
- spicker.V.signalBegin¶
Default:
0
Unit: s
Type: double
Override the relative start time (relative to the triggering pick) of the begin of the signal processing.
- spicker.V.signalEnd¶
Default:
60
Unit: s
Type: double
Override the relative end time (relative to the triggering pick) of the end of the signal window used to pick.
- spicker.V.filter¶
Default:
BW(4,0.3,1.0)
Type: string
Configure the filter used to process the raw vertical component data.
- spicker.V.detecFilter¶
Default:
STALTA(1,10)
Type: string
Configure the detector filter applied on filtered data.
- spicker.V.threshold¶
Default:
3
Type: double
The detector threshold that triggers the AIC picker.
- spicker.V.timeCorr¶
Default:
0
Unit: s
Type: double
The time correction added to the detection time before AIC time window is computed.
- spicker.V.marginAIC¶
Default:
5
Unit: s
Type: double
The AIC time window around the detection used to pick. If 0, AIC is not used.
- spicker.V.minSNR¶
Default:
15
Type: double
Define the mininum SNR as returned from AIC.
- detecLocid¶
Type: string
The sensor location code of the preferred stream used e.g. by scautopick and scrttv.
- detecStream¶
Type: string
The channel code of the preferred stream used by e.g. scautopick and scrttv. If no component code is given, the vertical component will be fetched from inventory considering the channel orientation (azimuth, dip). If that approach fails, ‘Z’ will be appended and used as fallback. Do not use regular expressions!
Note
amplitudes.* Define general parameters for amplitudes of a certain type. Create amplitude type profiles to define the time windows, minimum signal-to-noise ratio, amplitude thresholds and restitution for measuring amplitudes of a certain type.
- amplitudes.saturationThreshold¶
Default:
false
Unit: counts; %
Type: string
Define the saturation threshold for the optional saturation check. By default, the saturation check is disabled but giving a value above 0 will enable it. Waveforms that are saturated are not used for amplitude calculations.
This value can either be an absolute value of counts such as "100000" counts or a relative value (optionally in percent) with respect to the number of effective bits, e.g. "0.8@23" or "80%@23". The first version uses 1**23 * 0.8 whereas the latter uses 1**23 * 80/100.
The boolean value "false" explicitly disables the check.
- amplitudes.enable¶
Default:
true
Type: boolean
Define if amplitude calculation is enabled. If disabled, this station will be skipped for amplitudes and magnitudes.
- amplitudes.enableResponses¶
Default:
false
Type: boolean
Activate deconvolution for this station. If no responses are configured, an error is raised and the data is not processed. This flag will be overridden by the type specific flag (see GlobalAmplitudeProfile).
Note
amplitudes.$name.* An amplitude profile configures global parameters for a particular amplitude type. The available amplitude types are not fixed and can be extended by plugins. The name of the type must match the one defined in the corresponding AmplitudeProcessor. $name is a placeholder for the name to be used.
- amplitudes.$name.saturationThreshold¶
Default:
false
Unit: counts; %
Type: string
Define the saturation threshold for the optional saturation check. By default, the saturation check is disabled but giving a value above 0 will enable it. Waveforms that are saturated are not used for amplitude calculations.
This value can either be an absolute value of counts such as "100000" counts or a relative value (optionally in percent) with respect to the number of effective bits, e.g. "0.8@23" or "80%@23". The first version uses 1**23 * 0.8 whereas the latter uses 1**23 * 80/100.
The boolean value "false" explicitly disables the check.
- amplitudes.$name.enable¶
Default:
true
Type: boolean
Define if amplitude calculation of certain type is enabled.
- amplitudes.$name.enableResponses¶
Default:
false
Type: boolean
Activate deconvolution for this amplitude type. If not set, the global flag "amplitudes.enableResponses" will be used instead.
- amplitudes.$name.minSNR¶
Type: double
Define the minimum SNR to be reached to compute the amplitudes. This value is amplitude type specific and has no global default value.
- amplitudes.$name.noiseBegin¶
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the noise window used to compute the noise offset and noise amplitude. Each amplitude processor sets its own noise time window and this option should only be changed if you know what you are doing.
- amplitudes.$name.noiseEnd¶
Unit: s
Type: double
Override the default time (relative to the trigger time) of the end of the noise window used to compute the noise offset and noise amplitude. Each amplitude processor sets its own noise time window and this option should only be changed if you know what you are doing.
- amplitudes.$name.signalBegin¶
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to compute the final amplitude. Each amplitude processor sets its own signal time window and this option should only be changed if you know what you are doing.
- amplitudes.$name.signalEnd¶
Unit: s
Type: double
Override the default time (relative to the trigger time) of the end of the signal window used to compute the final amplitude. Each amplitude processor sets its own signal time window and this option should only be changed if you know what you are doing.
- amplitudes.$name.minDist¶
Unit: deg
Type: double
The minimum distance required to compute an amplitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to compute the distance. The default value is implementation specific.
- amplitudes.$name.maxDist¶
Unit: deg
Type: double
The maximum distance allowed to compute an amplitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to compute the distance. The default value is implementation specific.
- amplitudes.$name.minDepth¶
Unit: km
Type: double
The minimum depth required to compute an amplitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to retrieve the depth. The default value is implementation specific.
- amplitudes.$name.maxDepth¶
Unit: km
Type: double
The maximum depth allowed to compute an amplitude. This settings has no effect with e.g. scautopick as there is no information about the source of the event to retrieve the depth. The default value is implementation specific.
- amplitudes.$name.regionalize¶
Default:
true
Type: boolean
Control if the amplitude calculation should be regionalized or not. The regions and their configuration are taken from the corresponding magnitude profiles. If regionalization is activate, then e.g. modules without origin information will not be able to compute an amplitude as the origin is required to determine the effective settings.
If amplitudes for this particular type shall be computed regardless of any defined regions, set this parameter to false.
Note
amplitudes.$name.resp.* Several parameters if usage of full responses is enabled.
- amplitudes.$name.resp.taper¶
Default:
5
Unit: s
Define the length of the taper at either side of the waveform. The length will be added to the data request: start - taper and end + taper.
- amplitudes.$name.resp.minFreq¶
Default:
0.00833333
Unit: Hz
After data are converted in to the frequency domain that minimum frequency defines the end of the left-side cosine taper for the frequency spectrum. The taper applies from 0 Hz to {minFreq} Hz. A value of 0 or lower disables that taper.
- amplitudes.$name.resp.maxFreq¶
Default:
0
Unit: Hz
After data are converted in to the frequency domain that maximum frequency defines the start of the right-side cosine taper for the frequency spectrum. The taper applies from {maxFreq} Hz to {fNyquist} Hz. A value of 0 or lower disables that taper.
Note
amplitudes.resp.* Several parameters if usage of full responses is enabled. The parameters of this group will be overridden by type specific settings if given (see GlobalAmplitudeProfile).
- amplitudes.resp.taper¶
Default:
5
Unit: s
Define the length of the taper at either side of the waveform. The length will be added to the data request: start - taper and end + taper.
- amplitudes.resp.minFreq¶
Default:
0.00833333
Unit: Hz
The minimum frequency of the considered spectrum.
After data is converted into the frequency domain that minimum frequency defines the end of the left-side cosine taper applied to the spectrum. The taper applies from 0 Hz to {minFreq} Hz. A value of 0 or lower disables that taper.
- amplitudes.resp.maxFreq¶
Default:
0
Unit: Hz
The maximum frequency of the considered spectrum.
After data are converted in to the frequency domain that maximum frequency defines the start of the right-side cosine taper applied to the spectrum. The taper applies from {maxFreq} Hz to {fNyquist} Hz. A value of 0 or lower disables that taper.
Note
amplitudes.ttt.* Travel time table specific parameters to be used for the computation of travel times referred to in signal and noise time window specifications, e.g. “signalBegin”.
- amplitudes.ttt.interface¶
Default:
libtau
Type: string
No description available
- amplitudes.ttt.model¶
Default:
iasp91
Type: string
No description available
Note
amplitudes.WoodAnderson.* Parameters of the Wood-Anderson seismometer response used for instrument simulation. The default values are according to Uhrhammer and Collins (1990) and were part of the IASPEI Magnitude Working Group recommendations of 2011 September 9.
- amplitudes.WoodAnderson.gain¶
Default:
2080
Type: double
The gain of the Wood-Anderson response.
- amplitudes.WoodAnderson.T0¶
Default:
0.8
Unit: s
Type: double
The eigenperiod of the Wood-Anderson seismometer.
- amplitudes.WoodAnderson.h¶
Default:
0.7
Type: double
The damping constant of the Wood-Anderson seismometer.
Note
magnitudes.* Define magnitude parameters independent of amplitude-type profiles. For magnitude correction parameters, e.g., network of station corrections, create a magnitude type profile.
Note
magnitudes.$name.* A magnitude profile configures global parameters for a particular magnitude type. The available magnitude types are not fixed and can be extended by plugins. The name of the type must match the one defined in the corresponding MagnitudeProcessor. $name is a placeholder for the name to be used.
- magnitudes.$name.multiplier¶
Default:
1
Type: list:string
Part of the magnitude station correction. The final magnitude value is multiplier*M+offset. This value can be regionalized with name-value pairs. The name is the name of the region. Without a name the value is the default without regionalization. Example: "1.0, regionA: 0.9, regionB: 1.1".
- magnitudes.$name.offset¶
Default:
0
Type: list:string
Part of the magnitude station correction. The final magnitude value is multiplier*M+offset. This value can be regionalized with name-value pairs. The name is the name of the region. Without a name the value is the default without regionalization. Example: "0.0, regionA: -0.1, regionB: 0.2".
Note
picker.* Parameters controlling the second-stage picker for re-picking P phases after an initial detection.
Note
picker.AIC.* AIC picker is an implementation using the simple non-AR algorithm of Maeda (1985), see paper of Zhang et al. (2003) in BSSA. The picker interface name to be used in configuration files, e.g. of scautopick, is “AIC”.
- picker.AIC.noiseBegin¶
Default:
0
Unit: s
Type: double
Override the relative data acquisition time (relative to the triggering pick). This adds a margin to the actual processing and is useful to initialize the filter (Example: bandpass). The data is not used at all until signalBegin is reached. The data time window start is the minimum of noiseBegin and signalBegin.
- picker.AIC.signalBegin¶
Default:
-30
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to pick.
- picker.AIC.signalEnd¶
Default:
10
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to pick.
- picker.AIC.filter¶
Type: string
Override the default filter which is "raw". The typical filter grammar can be used.
- picker.AIC.minSNR¶
Default:
3
Type: double
Mininum SNR as returned from AIC for accepting picks.
Note
picker.BK.* Bkpicker is an implementation of the Baer/Kradolfer picker adapted to SeisComP. It was created by converting Manfred Baers from FORTRAN to C++ and inserting it as a replacement for the picker algorithm. The picker interface name to be used in configuration files, e.g. of scautopick,is “BK”.
- picker.BK.noiseBegin¶
Default:
0
Unit: s
Type: double
Override the relative data acquisition time (relative to the triggering pick). This adds a margin to the actual processing and is useful to initialize the filter (Example: bandpass). The data is not used at all until signalBegin is reached. The data time window start is the minimum of noiseBegin and signalBegin.
- picker.BK.signalBegin¶
Default:
-20
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to pick.
- picker.BK.signalEnd¶
Default:
80
Unit: s
Type: double
Override the default time (relative to the trigger time) of the begin of the signal window used to pick.
- picker.BK.filterType¶
Default:
BP
Type: string
BP (bandpass) is currently the only option.
- picker.BK.filterPoles¶
Default:
2
Type: int
Number of poles.
- picker.BK.f1¶
Default:
5
Unit: Hz
Type: double
Bandpass lower cutoff freq. in Hz.
- picker.BK.f2¶
Default:
20
Unit: Hz
Type: double
Bandpass upper cutoff freq. in Hz.
- picker.BK.thrshl1¶
Default:
10
Type: double
Threshold to trigger for pick (c.f. paper), default 10
- picker.BK.thrshl2¶
Default:
20
Type: double
Threshold for updating sigma (c.f. paper), default 20
Note
spicker.* Parameters controlling the secondary picker. Example: for picking S phases.
Note
spicker.L2.* L2 is an algorithm to pick S-phases based on existing P-phases. It works by creating the L2 norm of the two filtered horizontal components and then running the `detecFilter` on the L2 trace to find the S pick. Finally AIC is applied around the detected pick time to refine the detection. The picker name to be used in configuration files is “S-L2”.
- spicker.L2.noiseBegin¶
Default:
-10
Unit: s
Type: double
Override the relative data processing start time (relative to the triggering pick). This adds a margin to the actual processing and is useful to initialize the filter (Example: bandpass). The data is not used at all until signalBegin is reached. The data time window start is the minimum of noiseBegin and signalBegin.
- spicker.L2.signalBegin¶
Default:
0
Unit: s
Type: double
Override the relative start time (relative to the triggering pick) of the begin of the signal processing.
- spicker.L2.signalEnd¶
Default:
60
Unit: s
Type: double
Override the relative end time (relative to the triggering pick) of the end of the signal window used to pick.
- spicker.L2.filter¶
Default:
BW(4,0.3,1.0)
Type: string
Configure the filter used to process the horizontal components traces before computing the L2-norm.
- spicker.L2.detecFilter¶
Default:
STALTA(1,10)
Type: string
Configure the detector filter applied on the filtered L2 trace.
- spicker.L2.threshold¶
Default:
3
Type: double
The detector threshold that triggers the AIC picker.
- spicker.L2.timeCorr¶
Default:
0
Unit: s
Type: double
The time correction added to the detection time before AIC time window is computed.
- spicker.L2.marginAIC¶
Default:
5
Unit: s
Type: double
The AIC time window around the detection used to pick. If 0, AIC is not used.
- spicker.L2.minSNR¶
Default:
15
Type: double
Minimum SNR as returned from AIC for accepting picks.
Note
spicker.V.* This S-picker works similarly to L2 but it only uses the vertical component to pick S-phases. The picker name to be used in configuration files is “S-V”.
- spicker.V.noiseBegin¶
Default:
-10
Unit: s
Type: double
Override the relative data processing start time (relative to the triggering pick). This adds a margin to the actual processing and is useful to initialize the filter (Example: bandpass). The data is not used at all until signalBegin is reached. The data time window start is the minimum of noiseBegin and signalBegin.
- spicker.V.signalBegin¶
Default:
0
Unit: s
Type: double
Override the relative start time (relative to the triggering pick) of the begin of the signal processing.
- spicker.V.signalEnd¶
Default:
60
Unit: s
Type: double
Override the relative end time (relative to the triggering pick) of the end of the signal window used to pick.
- spicker.V.filter¶
Default:
BW(4,0.3,1.0)
Type: string
Configure the filter used to process the raw vertical component data.
- spicker.V.detecFilter¶
Default:
STALTA(1,10)
Type: string
Configure the detector filter applied on filtered data.
- spicker.V.threshold¶
Default:
3
Type: double
The detector threshold that triggers the AIC picker.
- spicker.V.timeCorr¶
Default:
0
Unit: s
Type: double
The time correction added to the detection time before AIC time window is computed.
- spicker.V.marginAIC¶
Default:
5
Unit: s
Type: double
The AIC time window around the detection used to pick. If 0, AIC is not used.
- spicker.V.minSNR¶
Default:
15
Type: double
Define the mininum SNR as returned from AIC.
Command-Line Options¶
Generic¶
- -h, --help¶
Show help message.
- -V, --version¶
Show version information.
- --config-file arg¶
Use alternative configuration file. When this option is used the loading of all stages is disabled. Only the given configuration file is parsed and used. To use another name for the configuration create a symbolic link of the application or copy it. Example: scautopick -> scautopick2.
- --plugins arg¶
Load given plugins.
- -D, --daemon¶
Run as daemon. This means the application will fork itself and doesn’t need to be started with &.
- --auto-shutdown arg¶
Enable/disable self-shutdown because a master module shutdown. This only works when messaging is enabled and the master module sends a shutdown message (enabled with --start-stop-msg for the master module).
- --shutdown-master-module arg¶
Set the name of the master-module used for auto-shutdown. This is the application name of the module actually started. If symlinks are used, then it is the name of the symlinked application.
- --shutdown-master-username arg¶
Set the name of the master-username of the messaging used for auto-shutdown. If "shutdown-master-module" is given as well, this parameter is ignored.
Verbose¶
- --verbosity arg¶
Verbosity level [0..4]. 0:quiet, 1:error, 2:warning, 3:info, 4:debug.
- -v, --v¶
Increase verbosity level (may be repeated, eg. -vv).
- -q, --quiet¶
Quiet mode: no logging output.
- --print-component arg¶
For each log entry print the component right after the log level. By default the component output is enabled for file output but disabled for console output.
- --print-context arg¶
For each log entry print the source file name and line number.
- --component arg¶
Limit the logging to a certain component. This option can be given more than once.
- -s, --syslog¶
Use syslog logging backend. The output usually goes to /var/lib/messages.
- -l, --lockfile arg¶
Path to lock file.
- --console arg¶
Send log output to stdout.
- --debug¶
Execute in debug mode. Equivalent to --verbosity=4 --console=1 .
- --trace¶
Execute in trace mode. Equivalent to --verbosity=4 --console=1 --print-component=1 --print-context=1 .
- --log-file arg¶
Use alternative log file.
Messaging¶
- -u, --user arg¶
Overrides configuration parameter
connection.username
.
- -H, --host arg¶
Overrides configuration parameter
connection.server
.
- -t, --timeout arg¶
Overrides configuration parameter
connection.timeout
.
- -g, --primary-group arg¶
Overrides configuration parameter
connection.primaryGroup
.
- -S, --subscribe-group arg¶
A group to subscribe to. This option can be given more than once.
- --content-type arg¶
Overrides configuration parameter
connection.contentType
.Default:
binary
- --start-stop-msg arg¶
Default:
0
Set sending of a start and a stop message.
Database¶
- --db-driver-list¶
List all supported database drivers.
- -d, --database arg¶
The database connection string, format: service://user:pwd@host/database. "service" is the name of the database driver which can be queried with "--db-driver-list".
- --config-module arg¶
The config module to use.
- --inventory-db arg¶
Load the inventory from the given database or file, format: [service://]location .
- --config-db arg¶
Load the configuration from the given database or file, format: [service://]location .
Records¶
- --record-driver-list¶
List all supported record stream drivers.
- -I, --record-url arg¶
The recordstream source URL, format: [service://]location[#type]. "service" is the name of the recordstream driver which can be queried with "--record-driver-list". If "service" is not given, "file://" is used.
- --record-file arg¶
Specify a file as record source.
- --record-type arg¶
Specify a type for the records being read.
Cities¶
- --city-xml arg¶
The path to the cities XML file. This overrides the default paths. Compare with the global parameter "citiesXML".
User interface¶
- -F, --full-screen¶
Start the application filling the entire screen. This only works with GUI applications.
- -N, --non-interactive¶
Use non-interactive presentation mode. This only works with GUI applications.