References¶
- 1
FDSN. International Federation of Digital Seismograph Networks. URL: http://www.fdsn.org/webservices/.
- 2
IPGP. URL: http://www.ipgp.fr.
- 3
IRIS SeisCode. IRIS. URL: https://seiscode.iris.washington.edu/projects/iloc.
- 4
ISC. Seismicity record. URL: http://www.isc.ac.uk/.
- 5
Natural Resources Canada (NRCAN), Earthquakes Canada. URL: https://earthquakescanada.nrcan.gc.ca/index-en.php.
- 6
OVSM, Interreg Caraibes. URL: https://www.interreg-caraibes.com.
- 7
fdsnws_scripts. SeisComP module. URL: https://www.SeisComP.de/SeisComP3/doc/applications/fdsnws_scripts.html.
- 8
gempa GmbH. The SeisComP development and maintenance company. URL: https://www.gempa.de/.
- 9
M.K. Bolton, D.A. Storchak, and J. Harris. Updating default depth in the isc bulletin. Phys. Earth Planet. Int., 1:27 – 45, 2006. doi:10.1016/j.pepi.2006.03.004.
- 10
I. Bondár and K.L. McLaughlin. A new ground truth data set for seismic studies. Seismol. Res. Lett., 3:465 – 472, 2009. doi:10.1785/gssrl.80.3.465.
- 11
I. Bondár and K.L. McLaughlin. Seismic location bias and uncertainty in the presence of correlated and non-gaussian travel-time errors. Bull. Seismol. Soc. Am., 1:172 – 193, 2009. doi:10.1785/0120080922.
- 12
I. Bondár, P. Mónus, C. Czanik, M. Kiszely, Z. Gráczer, Z. Wéber, and the AlpArrayWorking Group. Relocation of Seismicity in the Pannonian Basin Using a Global 3D Velocity Model. Seismol. Res. Lett., 6:2284 – 2293, 2018. doi:10.1785/0220180143.
- 13
I. Bondár and D. Storchak. Improved location procedures at the International Seismological Centre. Geophys. J. Int., 3:1220 – 1244, 2011. doi:10.1111/j.1365-246X.2011.05107.x.
- 14
P. Bormann and J. Saul. The new iaspei standard broadband magnitude mb. Seismol. Res. Lett., 5:698 – 705, 2008. doi:10.1785/gssrl.79.5.698.
- 15
S.R. Bratt and T.C. Bache. Locating events with a sparse network of regional arrays. Bull. Seismol. Soc. Am., 2:780 – 798, 1988. doi:10.1785/BSSA0780020780.
- 16
S.R. Bratt and W. Nagy. The locsat program. Science Applications International Corporation (SAIC), San Diego, 1991.
- 17
IASPEI. Summary of magnitude working group recommendations on standard procedures for determining earthquake magnitudes from digital data. IASPEI Website, 2013. URL: http://www.iaspei.org/commissions/commission-on-seismological-observation-and-interpretation/Summary_WG_recommendations_20130327.pdf.
- 18
T.H. Jordan and K.A. Sverdrup. Teleseismic location techniques and their application to earthquake clusters in the south-central pacific. Bull. Seismol. Soc. Am., 4:1105 – 1130, 1981. doi:10.1785/BSSA0710041105.
- 19
F.W. Klein. User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes. US Geological Survey, 2002-171:, 2002. URL: https://www.usgs.gov/node/279394, doi:10.3133/ofr02171.
- 20
W.H. Lee and J.C. Lahr. Hypo71 (revised): a computer program for determining local earthquake hypocentral parameters, magnitude, and first motion pattern of local earthquakes. US Geol. Survey Open-file Report 75-311, 1975. URL: https://pubs.er.usgs.gov/publication/ofr75311, doi:10.3133/ofr75311.
- 21
A. Lomax. The NonLinLoc Software Guide. Manual. URL: http://alomax.free.fr/nlloc/.
- 22
O.W. Nuttli. Seismic wave attenuation and magnitude relations for eastern north america. J. Geophys. Res., 5:876 – 885, 1973. doi:10.1029/JB078i005p00876.
- 23
C. Paige and M. Saunders. Lsqr: an algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 1:43 – 71, 1982. doi:10.1145/355984.355989.
- 24
G.L. Pavlis, F. Vernon, D. Harvey, and D. Quinlan. Lsqr: an algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 1:43 – 71, 1982. doi:10.1145/355984.355989.
- 25
C.F. Richter. An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am., 1:1 – 32, 1935. doi:10.1785/BSSA0250010001.
- 26
J. Ristau, D. Harte, and J. Salichon. A Revised Local Magnitude (ML) Scale for New Zealand Earthquakes. Bull. Seismol. Soc. Am., 106(2):, 2016. doi:10.1785/0120150293.
- 27
M. Sambridge. Geophysical inversion with a neighbourhood algorithm. I. Searching the parameter space. Geophys. J. Int., 2:479 – 494, 1999. doi:10.1046/j.1365-246X.1999.00876.x.
- 28
M. Sambridge and B.L.N. Kennett. Seismic event location: non-linear inversion using a neighbourhood algorithm. Pure and Applied Geophysics, 151(1):241 – 257, 2001. doi:10.1007/PL00001158.
- 29
S. Stange. ML determination for local and regional events using a sparse network in Southwestern Germany. J. Seismol., 10:247 – 257, 2006. doi:10.1007/s10950-006-9010-6.
- 30
S. Tsuboi, K. Abe, K. Takano, and Y. Yamanaka. Rapid determination of Mw from broadband P waveforms. Bull. Seismol. Soc. Am., 1995. doi:10.1785/BSSA0850020606.
- 31
P.M. Whitmore, S. Tsuboi, B. Hirshorn, and T.J. Sokolowski. Magnitude dependent correction for Mwp. Science of Tsunami Hazards, 20(4):, 2002.
- 32
J.B. Young, B.W. Presgrave, H. Aichele, D.A. Wiens, and E.A. Flinn. The Flinn-Engdahl Regionalisation Scheme: The 1995 revision. Phys. Earth Planet. Int., 96:223 – 297, 1996. doi:10.1016/0031-9201(96)03141-X.
- 33
Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences and gempa GmbH. The SeisComP seismological software package. GFZ Data Services. 2008. URL: https://www.seiscomp.de, doi:10.5880/GFZ.2.4.2020.003.
Potentially uncited but relevant sources of information include:
iLoc¶
Bondár, I., K. McLaughlin and H. Israelsson, Improved event location uncertainty estimates, Science Applications International Corp., Final Report, AFRL-RV-HA-TR-2008-1074, 2008.
Bondár, I. and K. McLaughlin, Seismic location bias and uncertainty in the presence of correlated and non-Gaussian travel-time errors, Bull. Seism. Soc. Am., 99, 172-193, doi:10.1785/0120080922, 2009.
Bondár, I., E.R. Engdahl, A. Villasenor, J.Harris and D. Storchak, ISC-GEM: Global instrumental earthquake catalogue (1900-2009), II. Location and seismicity patterns, Phys. Earth. Planet. Int., doi: 10.1016/j.pepi.2014.06.002, 239, 2-13, 2015.
Buland, R. and C.H. Chapman, 1983. The computation of seismic travel times, Bull. Seism. Soc. Am., 73, 1271-1302.
Dziewonski, A.M. and F. Gilbert, 1976, The effect of small, aspherical perturbations on travel times and a re-examination of the correction for ellipticity, Geophys., J. R. Astr. Soc., 44, 7-17.
Engdahl, E.R., R. van der Hilst, and R. Buland, 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seism. Soc. Am., 88, 722-743.
Kennett, B. and Engdahl, E.R., 1991. Travel times for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465.
Kennett, B.L.N., E.R. Engdahl, and R. Buland, 1995. Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108-124.
Kennett, B.L.N. and O. Gudmundsson, 1996, Ellipticity corrections for seismic phases, Geophys. J. Int., 127, 40-48.
Myers, S.C, M.L. Begnaud, S. Ballard, M.E. Pasyanos, W.S. Phillips, A.L. Ramirez, M.S. Antolik, K.D. Hutchenson, J. Dwyer, C. A. Rowe, and G. S. Wagner, 2010, A crust and upper mantle model of Eurasia and North Africa for Pn travel time calculation, Bull. Seism. Soc. Am., 100, 640-656.
Weber, B., Bondár, I., Roessler, D., Becker, J., SeisComP3 iLoc Integration Applied to Array Processing, SnT conference, Abstract: T3.5-P54, Vienna/Austria, 2019, abstract: T3.5-P54
FixedHypocenter¶
R. Le Bras, J. Wuster (2002). IDC Processing of Seismic, Hydroacoustic, and Infrasonic Data [IDC5.2.1Rev1]. Angewandte Wissenschaft, Software und Technologie GmbH.
J.F. Evernden (1969). Precision of epicenters obtained by small numbers of world-wide stations. Bull. Seism. Soc. Am., 59(3), 1365-1398.
E.A. Flinn (1965). Confidence regions and error determinations for seismic event location. Rev. Geophys., 3(1), 157-185.