.. _deepc-available-models: Available trained models ======================== gempa :cite:`gempa` provides many models trained on and applied to different data sets at different scales of epicentral distances, source depths and source types. They are listed in table :ref:`deepc-models`. Use these model names for configuration of `modelWeights` which exists for each sub-picker: * :confval:`picker.deepc.deepcEC.modelWeights` * :confval:`picker.deepc.deepcPC.modelWeights` * :confval:`picker.deepc.deepcPR.modelWeights` * :confval:`spicker.deepcSR.modelWeights` The corresponding DL models are installed with the *dlmodels* package. When installing *deepc* by gsm, *dlmodels* is installed automatically. A typical installation directory is :file:`/home/data/dlmodels`. Event classification models --------------------------- Currently, gempa doesn't provide a model for event classification. .. _deepc-event-classification-models: .. csv-table:: :header: model name, event types, applications, training data :widths: 15, 30, 30, 25 :delim: ; pncx-if-3; earthquake, anthropogenic event, mining; signals from earthquakes and machinery in mining environment at epicentral distance of tens of meters up to 10 km; mine pncx-if-10; earthquake, anthropogenic event, mining; signals from earthquakes and machinery in mining environment at epicentral distance of tens of meters up to 10 km; mine Phase classification models --------------------------- .. _deepc-phase-classification-models: .. csv-table:: :header: model name, specifics, applications, training data :widths: 15, 30, 30, 25 :delim: ; pnc-cb-1_4; P, S, Noise; (re-) classify phase hints for picks; Combined (INSTANCE :cite:`seisbench-data-in`, SCEDC :cite:`seisbench-data-sc` and STEAD :cite:`seisbench-data-st`) Joint time prediction and phase classification models ----------------------------------------------------- The Seismology Benchmark collection, SeisBench :cite:`M_nchmeyer_2022`, has published many pre-trained picker models. |gempa| provides converted versions of some of these models and also in-house trained ones. These models predict probabilities for P, S, and Noise for each sample of a trace. |deepc| post-processes their predictions to phase classification and onset refinement of a given trigger. EqTransformer ^^^^^^^^^^^^^ The following models are trained on the SeisBench implementation of EqTransformer :cite:`Mousavi_2020`. .. _deepc-phase-classification-timepred-models-eqt: .. csv-table:: :header: model name, specifics, applications, training data :widths: 15, 30, 30, 25 :delim: ; eq-et; 60 s, 100 Hz; regional data; `ETHZ` :cite:`seisbench-data-et` eq-ge; 60 s, 100 Hz; teleseismic data; `GEOFON` :cite:`seisbench-data-ge` eq-in; 60 s, 100 Hz; regional data; `INSTANCE` :cite:`seisbench-data-in` eq-iq; 60 s, 100 Hz; regional data; `Iquique` :cite:`seisbench-data-iq` eq-ne; 60 s, 100 Hz; regional data; `NEIC` :cite:`seisbench-data-ne` eq-or; 60 s, 100 Hz; regional data; original EqTransformer weights :cite:`Mousavi_2020` eq-sc; 60 s, 100 Hz; regional data; `SCEDC` :cite:`seisbench-data-sc` eq-st; 60 s, 100 Hz; regional data; `STEAD` :cite:`seisbench-data-st` PhaseNet ^^^^^^^^ The following models are trained on the SeisBench adaptions of PhaseNet :cite:`Zhu_2018`. .. _deepc-phase-classification-timepred-models-pn: .. csv-table:: :header: model name, specifics, applications, training data :widths: 15, 30, 30, 25 :delim: ; pn-et; 30.01 s, 100 Hz; regional data; `ETHZ` :cite:`seisbench-data-et` pn-ge; 30.01 s, 100 Hz; teleseismic data; `GEOFON` :cite:`seisbench-data-ge` pn-in; 30.01 s, 100 Hz; regional data; `INSTANCE` :cite:`seisbench-data-in` pn-iq; 30.01 s, 100 Hz; regional data; `Iquique` :cite:`seisbench-data-iq` pn-ne; 30.01 s, 100 Hz; regional data; `NEIC` :cite:`seisbench-data-ne` pn-or; 30.01 s, 100 Hz; regional data; original PhaseNet weights :cite:`Zhu_2018` pn-sc; 30.01 s, 100 Hz; regional data; `SCEDC` :cite:`seisbench-data-sc` pn-st; 30.01 s, 100 Hz; regional data; `STEAD` :cite:`seisbench-data-st` pn-in_vl-74; 30.01 s, 100 Hz; regional data; `INSTANCE` :cite:`seisbench-data-in`, Vogtland pn-in_vl-97; 30.01 s, 100 Hz, all-comps-normalized; regional data; `INSTANCE` :cite:`seisbench-data-in`, Vogtland pn-vl-91; 30.01 s, 100 Hz, all-comps-normalized; regional data; Vogtland pn-vp; 30.01 s, 100 Hz; volcanic data; `VCSEIS` :cite:`seisbench-data-vc` pnv-bq-0; 60 s, 100 Hz; volcanic data?; BQCombined pnv-bq-10; 30 s, 100 Hz; volcanic data?; BQCombined pnv-il_vc-2; 15 s, 100 Hz; volcanic data?; Iceland, `VCSEIS_hawaii` :cite:`seisbench-data-vc` pnv_15s-et-0; 15 s, 100 Hz; regional; `ETHZ` :cite:`seisbench-data-et` pnv_15s-il-2; 15 s, 100 Hz; regional; Iceland pnv_30s-et-sb; 30 s, 100 Hz; regional; Iceland pnv_60s-et-0; 60 s, 100 Hz; regional; Iceland