
CAPS Installation

Common Acquisition Protocol Server

gempa GmbH, Potsdam, Germany

Contents

1 Introduction 1

2 Architecture 1

3 Deployment 2

4 Archive 3

4.1 File Format . 3

4.1.1 SID Chunk . 4

4.1.2 HEAD Chunk . 4

4.1.3 DATA Chunk . 4

4.2 Optimization . 5

4.2.1 Merging of Data Chunks . 5

4.2.2 Splitting of Data Chunks . 5

4.2.3 Trimming of Overlaps . 6

4.3 Packet Types . 6

4.3.1 RAW . 6

4.3.2 ANY . 7

4.3.3 MiniSeed . 7

5 Interface Description 8

5.1 Client Interface . 8

5.1.1 Listing Available Streams . 8

5.1.2 Requesting Data . 9

5.2 Web Interface . 9

6 Startup and Configuration 9

6.1 Configuration Parameters . 10

6.2 Access Control . 13

6.2.1 Domains . 13

6.2.2 IP and network list . 14

6.2.3 Examples . 14

6.3 Secure Sockets Layer . 14

i

7 Plug-ins 15

7.1 RTPD Plug-in . 15

7.1.1 Configuration . 15

7.1.2 Test examples . 16

ii

Figure 1: Architecture of CAPS

1 Introduction

The Common Acquisition Protocol Server (CAPS) was developed to fulfill the needs to transfer multi-sensor data from

the station to the data center. As nowadays more and more stations with co-located sensors like broadband

seismometer, accelerometer, CGPS, temperature, video cameras, etc. are build up, a acquisition protocol is required,

which can efficiently handle low- and high-sampled data through one unified protocol.

The core features of CAPS are:

• multi-sensor data transfer

• lightweight protocol for minimized packet overhead

• archived and real-time data served through one protocol and one connection

• reliable data transfer, retransmission of data in case of network outage or server restart

• backfilling of data

• secure communication via SSL

• fine-grained access control

2 Architecture

Figure 1 shows the architecture of CAPS. The central component is the server, which receives data from sensors or other

data centers, stores it into an archive and provides it to connected clients. The connection between a data provider and

CAPS is made through a plug-in.

Plug-ins are independent applications which, similar to clients, use a network socket to communicate with the server.

The advantages of this loose coupling are:

• plug-ins may be developed independently and in a arbitrary programming language

• a poorly written plug-in does no crash the whole server

• plug-ins may run on different machines

• plug-ins may buffer data in case the server is temporary unavailable

1

Figure 2: Possible deployment of CAPS and its components

3 Deployment

Figure 2 illustrates a possible deployment of CAPS and its plug-ins.

The acquisition of data from other data centers is most likely done through a public interface reachable over the

Internet. For instance seismic waveform data is commonly distributed via SeedLink or ArcLink servers while the tide

gage community shares its data through a Web interface. For this center-to-center communication a plug-in is

launched on the receiving site to feed the CAPS server.

For the direct acquisition of data from a sensor the plug-in has to run on the sensor station. At this point the diagram

distinguishes two cases: In the first example the plug-in sends the data directly to the CAPS running at the data center.

In the second case the data is send to a local CAPS server on the sensor station. From there it is fetch by a caps2caps
plug-in running at the data center.

The advantage of the second approach is:

• better protection against data loss – In case of a connectivity problem plug-ins may transient buffer data.

Nevertheless main memory is limited and the buffered data may be lost e.g. because of an power outage. A local

CAPS will store observations to the hard drive for later retrieval.

• direct client access – A client may directly receive data from the sensor station. This is in particular useful for

testing and validating the sensor readings during the station setup phase. The standard CAPS client applications

may be used in the field.

• less packet overhead – The CAPS client protocol is more lightweight than the plug-in protocol. Once connected

each data stream is identified by a unique number. A client packet only consists of a two byte header followed by

the data.

The ability to connect different CAPS instances simplifies sharing of data. One protocol and one implementation is used

2

for the sensor-to-center and center-to-center communication. In the same way multiple CAPS instances may be

operated in one data center on different hardware to create backups, establish redundancy or balance the server load.

4 Archive

CAPS uses the SDS directory structure for its archive. As shown in figure 3 SDS organizes the data by year, network,

station and channel. One file is used for each day of the year. This tree structure eases archiving of data. One complete

year may be moved to external storage, e.g. tape libraries.

Figure 3: Archive structure

4.1 File Format

CAPS uses the RIFF file format for data storage. A RIFF file consists of chunks. Each chunk starts with a 8 byte chunk

header followed by data. The first 4 bytes denote the chunk type, the next 4 bytes the length of the following data

block. Currently the following chunk types are supported:

• SID – stream ID header

• HEAD – data information header

• DATA – data block

Figure 4 shows the possible structure of an archive file consisting of the different chunk types.

Figure 4: Possible structure of an archive file

3

http://www.seiscomp3.org/wiki/doc/applications/slarchive/SDS
http://de.wikipedia.org/wiki/Resource_Interchange_File_Format

4.1.1 SID Chunk

A data file may start with a SID chunk which defines the stream id of the following data. In the absence of a SID chunk,

the stream ID is retrieved from the file name.

content type bytes
id="SID" char[4] 4
chunkSize int32 4
networkCode + '\0' char* len(networkCode) + 1
stationCode + '\0' char* len(stationCode) + 1
locationCode + '\0' char* len(locationCode) + 1
channelCode + '\0' char* len(channelCode) + 1

4.1.2 HEAD Chunk

The HEAD chunk contains information about subsequent DATA chunks. It has a fixed size of 15 bytes and is inserted

under the following conditions:

• in front of first data chunk (beginning of file)

• packet type changed

• unit of measurement changed

content type bytes
id="HEAD" char[4] 4
chunkSize (=7) int32 4
version int16 2
packetType char 1
unitOfMeasurement char[4] 4

The packetType entry refers to one of the supported types described in section 4.3.

4.1.3 DATA Chunk

The DATA chunk contains the actually payload, which may be further structured into header and data parts.

content type bytes
id="DATA" char[4] 4
chunkSize int32 4
data char* chunkSize

Section 4.3 describes the currently supported packet types. Each packet type defines its own data structure.

Nevertheless CAPS requires each type to supply a startTime and endTime information for each record in order to

create seamless data streams. The endTime may be stored explicitly or may be derived from startTime , chunkSize ,

dataType and samplingFrequency .

In contrast to a data streams, CAPS also supports storing of individual measurements. These measurements are

indicated by setting the sampling frequency to 1/0.

4

4.2 Optimization

After a plug-in packet is received and before it is written to disk, CAPS tries to optimize the file data in order reduce the

overall data size and to increase the access time. This includes:

• merging data chunks for continuous data blocks

• splitting data chunks on the date limit

• trimming overlapped data

4.2.1 Merging of Data Chunks

CAPS tries to create large continues blocks of data by reducing the number of data chunks. The advantage of large

chunks is that less disk space is occupied by data chunk headers. Also seeking to a particular time stamp is faster

because less data chunk headers need to be read.

Data chunks can be merged if the following conditions apply:

• merging is supported by packet type

• previous data header is compatible according to packet specification, e.g. samplingFrequency and dataType
matches

• endTime of last record equals startTime of new record (no gap)

Figure 5 shows the arrival of a new plug-in packet. In alternative A) the merge failed and a new data chunk is created.

In alternative B) the merger succeeds. In the latter case the new data is appended to the existing data block and the

original chunk header is updated to reflect the new chunk size.

Figure 5: Merging of data chunks for seamless streams

4.2.2 Splitting of Data Chunks

Figure 6 shows the arrival of a plug-in packet containing data of 2 different days. If possible, the data is split on the

date limit. The first part is appended to the existing data file. For the second part a new day file is created, containing a

5

new header and data chunk. This approach ensures that a sample is stored in the correct data file and thus increases

the access time.

Splitting of data chunks is only supported for packet types providing the trim operation.

Figure 6: Splitting of data chunks on the date limit

4.2.3 Trimming of Overlaps

The received plug-in packets may contain overlapping time spans. If supported by the packet type CAPS will trim the

data to create seamless data streams.

4.3 Packet Types

CAPS currently supports the following packet types:

• RAW – generic time series data

• ANY – any possible content

• MiniSeed – native MiniSeed format

4.3.1 RAW

The RAW format is a lightweight format for uncompressed time series data with a minimal header. The chunk header is

followed by a 16 byte data header:

content type bytes
dataType char 1
startTime TimeStamp [11]

year int16 2
yDay uint16 2
hour uint8 1
minute uint8 1
second uint8 1
usec int32 4

samplingFrequencyNumerator uint16 2
samplingFrequencyDenominator uint16 2

6

http://www.iris.edu/data/miniseed.htm

The number of samples is calculated by the remaining chunkSize divided by the size of the dataType . The following

data types value are supported:

id type bytes
1 double 8
2 float 4

100 int64 8
101 int32 4
102 int16 2
103 int8 1

The RAW format supports the trim and merge operation.

4.3.2 ANY

The ANY format was developed to store any possible content in CAPS. The chunk header is followed by a 31 byte data

header:

content type bytes
type char[4] 4
dataType (=103, unused) char 1
startTime TimeStamp [11]

year int16 2
yDay uint16 2
hour uint8 1
minute uint8 1
second uint8 1
usec int32 4

samplingFrequencyNumerator uint16 2
samplingFrequencyDenominator uint16 2
endTime TimeStamp 11

The ANY data header extends the RAW data header by a 4 character type field. This field is indented to give a hint on

the stored data. E.g. an image from a Web cam could be announced by the string JPEG .

Since the ANY format removes the restriction to a particular data type, the endTime can no longer be derived from the

startTime and samplingFrequency . Consequently the endTime is explicitly specified in the header.

Because the content of the ANY format is unspecified it neither supports the trim nor the merge operation.

4.3.3 MiniSeed

MiniSeed is the standard for the exchange of seismic time series. It uses a fixed record length and applies data

compression.

CAPS adds no additional header to the MiniSeed data. The MiniSeed record is directly stored after the 8-byte data chunk

header. All meta information needed by CAPS is extracted from the MiniSeed header. The advantage of this native

7

http://www.iris.edu/data/miniseed.htm

MiniSeed support is that existing plug-in and client code may be reused. Also the transfer and storage volume is

minimized.

Because of the fixed record size requirement neither the trim nor the merge operation is supported.

5 Interface Description

5.1 Client Interface

CAPS provides a line based client interface for requesting data and showing available streams. The telnet command

may be used to connect to the server:

Using telnet application to connect to a local CAPS server

sysop@host:~$ telnet localhost 18002

The following commands are supported by the server:

• HELLO – prints server name and version

• BYE – disconnects from server

• INFO STREAMS [stream id filter] – lists available streams and time spans, see section 5.1.1

• BEGIN REQUEST – starts a request block, followed by request parameters, see section 5.1.2

– REALTIME ON|OFF – enables/disables real-time mode, if disabled the connection is closed if all archive data

was sent

– STREAM ADD|REMOVE <NET.STA.LOC.CHA> – adds/removes a stream from the request, may be repeated in one

request block

– TIME [<starttime>]:[endtime] – defines start and end time of the request, open boundaries are allowed

• END – finalizes a request and starts acquisition

• PRINT REQUESTS – prints active request of current session

Requests to server are separated by a new line. For the response data the server prepends the message length to the

data. In this way non ASCII characters or binary content can be returned.

5.1.1 Listing Available Streams

Listing 1 shows an example telnet conversation of a request for available streams. The first line contains the request

command. All other lines represent the server response. The response is 124 characters long. The length parameter is

interpreted by telnet and converted to its ASCII representation, in this case: | .

Listing 1: Requesting filtered stream list

1 INFO STREAMS VZ.HILO. *

2 |STREAMS

3 VZ.HILO.WLS.CAM 2013−07−26T00:00:01 2013−08−02T09 :28 : 1 7

4 VZ.HILO.WLS.SSH 2008−06−06T00:00:00 2013−08−02T09:04:00

5 END

8

5.1.2 Requesting Data

Data request are initiated by a request block which defines the stream and the time span to fetch. Listing 2 shows such

a request block in lines 1-5. Line 2 disables the real-time mode which will close the session after all data was read. Line 3

adds the stream to the request set. More streams may be added in successive lines. Line 4 specifies a start time and an

open end time.

The first response chunk starts at line 6 and ends at line 11. I has a length of 68 byte (= ACCII D) and contains version

information and a session table. The table maps a 2 byte integer id to data stream meta information. In this way

following data chunks can be distinguished by only 2 bytes and the header information has to be transmitted only once.

Line 12 contains the data chunks. It is omitted here because it contains unprintable characters. A data chunk starts

with the 2 id bytes followed by the 4 byte chunk size.

After all data was transmitted the server reports the end of the stream (line 13-15) and the end of the session (line 16).

Listing 2: Requesting realtime data for 2 streams with open end time

1 BEGIN REQUEST

2 REALTIME OFF

3 STREAM ADD VZ.HILO.WLS.SSH

4 TIME 2013 ,08 ,02 ,09 ,00 ,02:

5 END

6 DSTATUS OK

7 SESSION_TABLE VERSION: 1

8 PACKET_HEADER IDSIZE :2 ,DATASIZE:4

9 FREQUESTS

10 ID : 1 , SID :VZ.HILO.WLS.SSH,SFREQ:1/60 ,UOM:mm,FMT:RAW/FLOAT

11 END

12 [unprintable data]

13 ’REQUESTS

14 ID:−1 ,SID :VZ.HILO.WLS.SSH

15 END

16 EOD

5.2 Web Interface

CAPS ships with a read-only Web interface which provides server traffic statistics (figure 7) and which allows to view

and filter the available streams (figure 8). For the RAW and MiniSeed packets it is also possible to view the waveform

data by clicking on a an entry of the stream table. The Web interface is disabled by default and may be enabled by

configuring a valid port number under AS.http.port .

6 Startup and Configuration

CAPS is developed as a standard SeisComP3 application. It uses the SeisComP3 infrastructure for startup, configuration

and logging. Please refer to the SeisComP3 documentation for a comprehensive description.

Figure 9 shows a screen shot of scconfig, which is the central SeisComP3 GUI allowing to configure, start and monitor

CAPS.

9

http://www.seiscomp3.org/doc/seattle/

Figure 7: Overview perspective of CAPS Web interface showing traffic and file statistics

On the command line the following sequence may be used to enable, start and monitor CAPS:

Enable, start, and verify CAPS operation

sysop@host:~$ seiscomp enable caps
sysop@host:~$ seiscomp start caps
sysop@host:~$ seiscomp check caps

Dependent on the configured log level CAPS will log to ~/.seiscomp3/log/caps . For debugging purposes it is a good

practice to stop the CAPS background process and run it in the foreground using the --debug switch:

Running caps as foreground process

sysop@host:~$ seiscomp stop caps
sysop@host:~$ seiscomp exec caps --debug

6.1 Configuration Parameters

In addition to the standard SeisComP3 configuration parameters CAPS supports the following settings:

• AS.port – Defines the server port for client requests.

Default: 18002

10

Figure 8: Stream perspective of CAPS Web interface allowing to filter availability streams and to view waveform data for RAW and

MiniSeed records

• AS.access-list – Defines the path to the access control list to use. By default access is not restricted. The format

of the access control list is described in section 6.2

Default: @CONFIGDIR@/caps/access.cfg”

• SSL – CAPS supports secure communication via the Secure Sockets Layer. See section 6.3 for a brief SSL

introduction.

– AS.SSL.port – Defines the SSL server port for client requests.

Default: -1 (disabled)

– AS.SSL.certificate – Defines the path to the SSL certificate.

– AS.SSL.key – Defines the path to the private SSL key to use. This key is not shared with clients.

• AS.plugins.port – Defines the server port to use for plugin connections.

Default: 18003

• AS.http.port – Defines the server port for HTTP connections. By default the Web interface is disabled.

11

Figure 9: SeisComP3 utility allowing to configure, start and monitor CAPS

12

Default: -1 (disabled)

• AS.filebase.keep – Defines the number of days to keep data. The format is a comma-separated list of

<stream id>:<number of days> . The default is to keep data forever. The cleanup routine is started once per day.

E.g. the setting GE.*.*.*:365,*.*.*.*:30 would purge data from the GE network after one year while all other

data is cleaned up after one month.

• File Cache – CAPS does not keep all files of all streams open. It tries to keep open the most frequently used files

and closes all others. The more files CAPS can keep open the faster the population of the archive. The limit of

open files depends on the security settings of the user under which CAPS is running.

– AS.filebase.cache.openFileLimit – The maximum number of open files. Because a stream file can have an

associated index file this value is half of the physically opened files in worst case.

Default: 250

– AS.filebase.cache.unusedFileLimit – Limit of cached files in total. This value affects also files that are

actually explicitly closed by the application. CAPS will keep them open (respecting the openFileLimit

parameter) as long as possible and preserve a file handle to speed up reopening the file later.

Default: 1000

Some of the parameters listed above may be overridden on the command line. Please issue of the following commands

to get an overview of available command line parameters:

Getting help on available configuration parameters

sysop@host:~$ seiscomp exec caps --help
sysop@host:~$ seiscomp exec man caps

6.2 Access Control

CAPS allows to control access to its service through a configuration file. The default file location is

~/.seiscomp3/caps/access.cfg . The format of this file is line-based. Each line consist of a key-value pair separated by

'=' . The formal of one rule definition is: [DOMAIN.]<ALLOW|DENY> = <IP or network list>

The key part defines the domain and the access decision (allow or deny). The value part contains a list of IP addresses or

network mask this rule should be applied on. The default policy is ALLOW. If at least one ALLOW rule is defined for a

domain, all not matching IPs are denied. In addition the set of allowed IPs may be further restricted by a DENY rule.

6.2.1 Domains

A domain defines the interface a rule should be applied to. If no domain is specified the rule is assigned to the global

domain which affects all interfaces. The following domains exist:

• STATIONS – Defines access to the client interface on the base of stream ids. The station rules are applied in

combination with the global rules. First access to the global domain must be granted, then the fine-grained

stream filter is evaluated.

Definition: STATIONS[.NET[.STA[.LOC[.CHA]]]].<ALLOW|DENY> = <IP or network list>
• PLUGINS – Defines access to the plug-in interface. If no plug-in rule is found the rules of the global domain are

applied.

Definition: PLUGINS.<ALLOW|DENY> = <IP or network list>
• WEB – Defines access to the Web interface. If no Web rule is found the rules of the global domain are applied.

13

Definition: WEB.<ALLOW|DENY> = <IP or network list>

6.2.2 IP and network list

The value part of a rule consist of a comma-separated list of IP addresses or network masks. Currently only IPv4

adresses/masks are supported. IP addresses are specified by 4 numbers, e.g. 127.0.0.1 . For network masks the short

and long representation is supported. E.g. the mask 192.168.0.0/24 (or its long representation

192.168.0.0/255.255.255.0) would match all IPs starting with 192.168.0.X .

6.2.3 Examples

Listing 3: Simple access configuration

Re t r i c t access to a l l s e r v i c e s to l o c a l machine

ALLOW = 127 .0 .0 . 1

Listing 4: Advanced access configuration

C l i e n t data access :

− p rov ide access to a l l networks

− l i m i t access o f GE network to IPs s t a r t i n g with 1 3 9 . 1 7 . X . X and IP 1 . 2 . 3 . 4

− deny access to s t a t i on GE . APE of IP 1 . 2 . 3 . 4

STATIONS.GE.ALLOW = 139. 17 .0 .0/16 , 1 . 2 . 3 . 4

STATIONS.GE.APE.DENY = 1 . 2 . 3 . 4

Accept data from 1 7 2 . 1 6 . 1 . X but deny data from IP 42

PLUGINS.ALLOW = 172 . 16 . 1 .0/24

PLUGINS.DENY = 1 72 . 1 6 . 1 . 42

R e s t r i c t access to Web i n t e r f a c e to l o c a l machine

WEB.ALLOW = 127 .0.0. 1/32

6.3 Secure Sockets Layer

The Secure Sockets Layer (SSL) is a standard for establishing a secured communication between applications using

insecure networks. Neither client request nor server responses are readable by communication hubs in between. SSL is

based on a public-key infrastructure (PKI) to establish trust about the identity of the communication counterpart. The

concept of a PKI is based on public certificates and private keys.

The following example illustrates how to a self-signed certificate using the OpenSSL library:

creating a self signed certificate

sysop@host:~$ openssl req -new -x509 -newkey rsa:1024 -out caps.crt -keyout caps.key -nodes

14

The last parameter -nodes disables the password protection of the private key. If omitted, a password must be defined

which will be requested when accessing the private key. CAPS will request the password on the command line during

startup.

To enable SSL in CAPS the AS.SSL.port as well as the location of the AS.SSL.certificate and AS.SSL.key file must be

specified. Optionally the unencrypted AS.port may be deactivated by setting a value of -1 .

7 Plug-ins

Since CAPS was brought to the market more and more plug-ins have been developed. The most import once are:

• caps2caps – Mirrors data between different CAPS instances. All packet types are supported.

• slink2caps – Connects a SeedLink and CAPS. The data is retrieved and store in the MiniSeed format.

• rs2caps – Collects data from a SeisComP3 RecordStream. The data is either stored in the RAW or MiniSeed format.

• rtpd2caps – Collects data from a RTPD server. The data is stored in the RAW format.

7.1 RTPD Plug-in

The RTPD plug-in collects MRF packets through the REN protocol. It is supposed to have very low latency suitable for

real-time data transmission.

7.1.1 Configuration

The RTPD plug-in needs a configuration file which is usually created by its init script. This configuration files lives under

$SEISCOMP_ROOT/var/lib/rtpd2caps.cfg . The init script reads the configuration from

$SEISCOMP_ROOT/etc/rtpd2caps.cfg and the bindings from $SEISCOMP_ROOT/etc/key/rtpd2caps/* and prepares the

above final configuration file.

Listing 5 displays an example of a generated rtpd2caps configuration file:

Listing 5: $SEISCOMP_ROOT/var/lib/rtpd2caps.cfg

Number o f r e co rd s to queue i f the s ink connect ion i s not a v a i l a b l e

queue_size = 20000

Def ine the channel mapping . Each item i s a tup l e o f source i d composed

of stream and channel and ta rge t l o c a t i on and stream code . The ta rge t code

can be a s i n g l e channel code (e . g . HNZ) or a combination of l o c a t i on and

channel code (e . g . 00.HNZ) .

channels = 1 .0 :HNZ, 1 . 1 :HN1, 1 . 2 :HN2

S ta r t s a p a r t i c u l a r un i t c on f i gu r a t i on . channel mapping can be ove r r i dden

in a un i t s e c t i on as we l l .

unit 200B3

Def ines the output network code f o r t h i s un i t .

network = ”RT”

Def ines the output s t a t i on code f o r t h i s un i t .

station = ” TEST1 ”

15

http://www.seiscomp3.org/wiki/doc/applications/seedlink
http://www.seiscomp3.org/doc/seattle/2013.200/apps/global_recordstream.html
http://www.reftek.com/products/software-RTPD.htm

The RTPD s e r v e r address .

address = 1 .2 .3 .4 :2543

The CAPS s e r v e r address .

sink = localhost :18003

Another un i t .

unit 200B4

network = ”RT”

station = ”TEST2 ”

address = 1 .2 .3 .4 :2543

sink = localhost

A user does not need to create this configuration file manually if using the plug-in integrated into SC3. The rtpd2caps

plug-in can be configured as any other SC3 module, e.g. via scconfig .

An example SC3 configuration to generate the configuration is shown by listing 8.

Listing 6: $SEISCOMP3_ROOT/etc/rtpd2caps.cfg

RTP s e r v e r address in format [host] : [por t] . I f por t i s omitted , 2543 i s

assumed . This i s op t i ona l and only used i f the address in a b ind ing i s

omitted .

address = 1 . 2 . 3 . 4

CAPS s e r v e r address to send data to in format [host] : [por t] . I f por t i s

omitted , 18003 i s assumed . This i s op t i ona l and only used i f the s ink in a

b ind ing i s omitted .

sink = localhost :18003

Channel mapping l i s t where each item maps a REFTEK stream/channel i d to a

SEED channel code with op t i ona l l o c a t i on code . Format :

{ stream } . { channel } : [{ l o c } .] { cha } , e . g . 1 . 0 :00 .HHZ. This i s the d e f au l t used

i f a s t a t i on b ind ing does not d e f i n e i t e x p l i c i t l y .

channels = 1 .0 :HNZ, 1 . 1 : HN1, 1 . 2 :HN2

Number o f packets that can be queued when a s ink i s not reachab le .

queueSize = 20000

Listing 7: $SEISCOMP3_ROOT/etc/key/rtpd2caps/station_RT_TEST1

Mandatory REFTEK un i t i d (hex) .

unit = 200B3

Listing 8: $SEISCOMP3_ROOT/etc/key/rtpd2caps/station_RT_TEST2

Mandatory REFTEK un i t i d (hex) .

unit = 200B4

16

7.1.2 Test examples

To test a server and check what records are available, rtpd2caps can be ran in test and verify mode.

Server and record availability test

sysop@host:~$ rtpd2caps -H 1.2.3.4 --verify --test

Requested attributes:
DAS 'mask' (at_dasid) = 00000000
Packet mask (at_pmask) = 0x00004000
Stream mask (at_smask) = 0x0000FFFF
Socket I/O timeout (at_timeo) = 30
TCP/IP transmit buffer (at_sndbuf) = 0
TCP/IP receive buffer (at_rcvbuf) = 0
blocking I/O flag (at_block) = TRUE
2013:198-08:32:40 local [2195] Parameters:
2013:198-08:32:40 local [2195] * queue_size = 10000 records
2013:198-08:32:40 local [2195] * backfilling_buffer_size = 0s
2013:198-08:32:40 local [2195] Configured 1 source(s) and 0 sink(s)
[RTP 69.15.146.174:2543]

XX.YYYY unit 0
2013:198-08:32:40 local [2195] started reading from RTP server at 1.2.3.4:2543
2013:198-08:32:42 local [2195] Commands may not be sent
2013:198-08:32:42 local [2195] connected to 1.2.3.4:2543
Actual parameters:
DAS 'mask' (at_dasid) = 00000000
Packet mask (at_pmask) = 0x00004000
Stream mask (at_smask) = 0x0000FFFF
Socket I/O timeout (at_timeo) = 30
TCP/IP transmit buffer (at_sndbuf) = 0
TCP/IP receive buffer (at_rcvbuf) = 0
blocking I/O flag (at_block) = TRUE
200B3 stream 1

chamap: 7
chacnt: 3
cha : 99
dtype : 50
time : 2013.198 08:33:39.714000
nsamp : 20
bytes : 512
rate : 100
chans : 0, 1, 2

...

17

	Introduction
	Architecture
	Deployment
	Archive
	File Format
	SID Chunk
	HEAD Chunk
	DATA Chunk

	Optimization
	Merging of Data Chunks
	Splitting of Data Chunks
	Trimming of Overlaps

	Packet Types
	RAW
	ANY
	MiniSeed

	Interface Description
	Client Interface
	Listing Available Streams
	Requesting Data

	Web Interface

	Startup and Configuration
	Configuration Parameters
	Access Control
	Domains
	IP and network list
	Examples

	Secure Sockets Layer

	Plug-ins
	RTPD Plug-in
	Configuration
	Test examples

